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SERGEY OBLEZIN

Over the recent decades representation theory has gained a central role in modern mathematics,
linking such areas as number theory, topology, differential equations, algebraic and arithmetic
geometry, theory of automorphic forms. A cornerstone of modern representation theory is the
Langlands program of classification of admissible representations of reductive groups.

The geometric interpretation of Langlands program for groups over function fields is been devel-
oped since 1970s. This approach is based on two key constructions due to Drinfeld and Beilinson.
The first construction is originally introduced by Drinfeld for the group GL(2); it originates from a
generalization of the Lang-Rosenlicht geometric classical (Abelian) class field theory to the case of
non-commutative group. The second construction is based on the Beilinson-Bernstein procedure
of localization of g-modules on generalized flag manifold G/B of arbitrary semisimple Lie group
G. In order to establish an equivalence of these two basic constructions a concept of chiral Hecke
algebra was introduced, explicit construction of which is still to be determined.

One possible approach is based on a construction of distinguished coordinates (also referred
to as separated variables) on G-orbits. Such coordinates should have a distinct group-theoretic
meaning; they should make possible to obtain integral representations of a standard set of special
functions on G. In this Proposal I present several series of my results obtained in this framework
over the last 8 years. At the end of Proposal I outline the problems yet to be solved.

§1. Geometric interpretation of isomonodromy method. Papers [O1] and [O2], which
contain the central part of my Ph.D. thesis, are devoted to studying the isomonodromy method
for Fuchsian differential equations of order two on CP1 in the setting of the first Drinfeld’s con-
struction. In particular, [O1], [O2] generalize the results of [AL] to the case of arbitrary num-
ber of singularities of equation. Let Mn(λ1, . . . , λn) be the coarse moduli space of collections
(L, ∇, φ; λ1, ..., λn), on X = P1 \ {a1, . . . , an}, where L is a rank 2 bundle on P1 equipped with
a connection ∇ : L → L ⊗ Ω1

P1(M) with M = a1 + ... + an, and the horizontal isomorphism
φ : detL ' OP1 ; the eigenvalues of the residues Res ai

∇ are (λi, −λi).

• Bi-rational isomorphisms between moduli spaces Mn(λ1, . . . , λn) and Mn(λ̃1, . . . , λ̃n) for cer-

tain λ̃i are given by the elementary modifications of the SL(2) bundle L performed at marked
points x1, . . . , xn. In [O2] the group structure of such isomorphisms is calculated.

Theorem 1. The group of isomorphisms between moduli spaces Mn is isomorphic to the affine
Weyl group of type Cn.

• This result generalizes classical results of Gauss, Kummer and Heun on certain relations
between hypergeometric and Heun functions which correspond to particular case n = 3, 4.

Corollary 1. (i) The 24 Kummer series of hypergeometric function admits a transitive action of
bi-octaedron group W (C3) '

(
Z/2Z

)
oS4 of order 48. The Gauss relations between hypergeometric

functions represent the translation part of affine Weyl group W (Ĉ3).
(ii) The 192 Kummer-type series of Heun functions admit a transitive action of finite Weyl group

W (C4) =
(
Z/2Z

)4 o S4 of order 384. Gauss-type relations for Heun functions represent the

translation part of affine Weyl group W (Ĉ4).

• In [O1] the distinguished parametrization of moduli space Mn is constructed; besides, this
establishes a geometric meaning of isomonodromy method.

1



2 SERGEY OBLEZIN

Theorem 2. [O1] (i) The open part of Mn is isomorphic to the open part of moduli space of
exact sequences

0 −−−→ O ⊕ T (−M) −−−→ L̃ −−−→
n−3⊕
k=1

δxk
⊗ pk ⊗ Txk

−−−→ 0

where L̃ is a vector bundle on P1 of degree -1 with a logarithmic connection ∇̃ with fixed eigenvalues
of residues at ai: (1 − λ1, λ1) and (λi,−λi) for 1 < i ≤ n; here δxi

denotes the sky-scraper sheaf

supported at xk ∈ X and pk ⊂ L̃|xk
is a one-dimensional subspace.

(ii) The open part of the complete self-intersection locus Θn of compactifying divisor Mn\Mn has
dimension n−3, and it is isomorphic to the affine space of certain logarithmic connections ∇Θn in
the rank two bundle O⊕T (−M) with fixed isomorphism detO⊕T (−M) ' O(−a1− . . .− an−2).
The connection ∇Θn has fixed eigenvalues of the residues at simple poles ai: they are (1− λi, λi)
for i = 1, . . . , n− 2 and (λi,−λi) for i = n− 1, n.

Besides, it is shown [O1] that the coordinates (xk, pk) are exactly the parameters of apparent
singularities [AB] of the system of linear differential equations defined by the sl(2)-connection ∇,
and thus they are the canonical dynamical variables of the corresponding isomonodromy problem.
• In [O1] the following geometric interpretation of isomonodromy method is given. As it been

explained, isomonodromy dynamics modifies the spectral data of the connection ∇; precisely, it
deforms the spectral curve Cλ of ∇ inside Mn. It is shown [O1] that under the isomonodromy
dynamics Cλ tends to a limit cycle (degenerate spectral curve) which coincides with the compact-
ifying divisor in Drinfeld’s compactification of Mn.

§2. Monopole spaces and Quantum groups. In a series of papers [GKLO1]-[GKLO2] an
explicit interrelation between the separation of variables and representation theory of Poisson-Lie
groups is established. More precisely, paper [GKLO1] is devoted to identification of moduli space
of holomorphic maps from a rational curve to the generalized flag variety G/B of a semisimple
complex Lie group G with certain symplectic orbits of the Yangian Y (g) (see [D2]).
• Let g be a complex semisimple Lie algebra of rank ` with Cartan matrix ‖ai,j‖, and let b

be its Borel subalgebra; denote by Ycl the Poisson-Lie group (classical limit) of the Yangian. In
theorem 3.1 in [GKLO1] a new class of representations of Y (g) and Y (b) is constructed. These
representations turn out to quantize (in the sense of [D2]) the moduli space of G-monopoles of
topological charge (m1, . . . , m`); the precise statement is as follows.

Theorem 3. (i) The open parts O(0) of the rational symplectic leaves of Ycl(b) corresponding to
the representations constructed in theorem 3.1 ([GKLO1]) are isomorphic to the open parts of the
spaces of the based maps

(P1,∞) → (G/B, B+)

of the fixed multi-degree m = (m1, · · · ,m`) ∈ H2(G/B,Z).
(ii) The open parts O(0) of the rational symplectic leaves of Ycl(g) corresponding to the repre-

sentations constructed in theorem 3.1 ([GKLO1]) are isomorphic to the spaces of the based maps

with additional restrictions
∑`

j=1 mjaji = li ∈ Z+.

• In [GKLO2] the class of representations proposed in Theorem 3.1 [GKLO1] is generalized to
a class of the infinite-dimensional representations of the finite-dimensional quantum groups Uq(g)
and affine quantum groups Uq(ĝ)c=0 for an arbitrary semi-simple Lie algebra g.
• Similar to the connection of the Yangian representations with the quantization of the monopoles

on R3 the proposed representations of the affine algebra turn out to be connected with the quanti-
zation of the periodic monopoles on R2×S1. Thus the classification of the trigonometric r-matrices
underlying the quantum affine algebras Uq(ĝ) [BD] corresponds to the classification of the partic-
ular class of asymptotic boundary conditions on a monopole solutions on R2×S1. It is natural to
make one step further and consider the quantization of the moduli space of the double-periodic
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monopoles on R× S1 × S1. Presumably this should correspond to the quantum elliptic algebras
and the choice of asymptotic boundary conditions may be associated with elliptic r-matrix [BD].

§3. Baxter operators and Representation theory. The notion of Q-operator was intro-
duced by Baxter as a key tool to solve quantum integrable systems [B]. These operators were
originally constructed for a particular class of integrable systems associated to affine Lie algebras

ĝlN . Later a new class of Q-operators corresponding to ĝlN -Toda chains was proposed [PG].
The series of papers [GKLO3], [GLO1]-[GLO4] is devoted to studying of Baxter’s Q-operator

formalism [B] for the quantum Toda chain associated to a reductive group G; a special interest to
Toda chain is due to an identification [K] of g-Toda wave function with g-Whittaker function. In
particular, an application of Baxter Q-operator formalism provides a set of recursive properties of
Whittaker functions and this leads to new results on automorphic L-functions.
• In 1996 Givental discovered a remarkable integral representation for the GL(N) Toda wave

function. In [GKLO3] a group-theoretic description of the Givental integral formula is given and
the corresponding representation of the universal enveloping algebra Ugl(N) is constructed (see
Proposition 2.1). Besides, it is shown [GKLO3] that in group theory interpretation the contour
of integration in Givental formula can be naturally identified with the subset of totally positive
unipotent elements N◦

+ ⊂ N+.
• One of the most important properties of Givental representation is its recursive structure.

Theorem 4. [GKLO3] Let Ψ
(N−1)
λ1,...,λN−1

(TN−1,1, . . . , TN−1,N−1) be the GL(N−1) Whittaker function.
Then the function

Ψ
GL(N)
λ1,...,λN

(TN,1, . . . , TN,N) = (QGL(N)
GL(N−1) ∗Ψ

(N−1)
λ1,...,λN−1

)(TN,1, . . . , TN,N)

is the GL(N) Whittaker function depending on coordinates TN,1, . . . , TN,N . The recursive operator

QGL(N)
GL(N−1) is an integral operator acting on Whittaker function by a convolution.

In [GKLO3] a natural connection between operatorsQGL(N)
GL(N−1) and Pasquier-Gaudin’s Q-operators

[PG] was discovered.
• A generalization of [GKLO3] to the other Lie algebras is established in [GLO1]-[GLO3].

Namely, [GLO1]-[GLO2] contain explicit formulas for Baxter Q-operators for classical finite and
infinite dimensional, and (twisted) affine Lie algebras. Besides, in [GLO3] the Givental integral
representation of Whittaker function is generalized to the case of Lie algebras of classical type.

For example, in the case Cn the Givental representation reads as follows.

Theorem 5. The eigenfunction for Cn open Toda chain is given by

ΨCn
λ1,...,λn

(z1, . . . , zn) =

∫ ∏

1≤i≤k≤n−1

dzk,i

n−1∏

k=1

Q Ck
Ck+1

(zk+1,1, . . . , zk+1,k+1; zk,1, . . . , zk,k),

where zi := zn,i and the kernels Q Ck
Ck+1

of the integral operators are given by the convolutions of

the kernels Q
Dk+1

Ck+1
and Q Ck

Dk+1
:

Q Ck
Ck+1

(zk+1; zk) =

∫ k+1∏
i=1

dxk,i Q
Dk+1

Ck+1
(zk+1; xk+1) ·Q Ck

Dk+1
(xk+1; zk)

Observe that the obtained formulas have an interesting recursive structure. Recall that in

the case GL(N) (see [G], [GKLO3]) the integral operator QGL(N)
GL(N−1) intertwining GL(N − 1) and

GL(N) wave functions has a simple ”quasi-classical” structure: it is presented as an exponent of
a sum of some (exponential) functions. In the case of other classical groups the integral kernel
is given by an integral convolution of two elementary quasi-classical kernels. Also emphasize
that elementary quasi-classical kernels QCk

Dk(+1)
intertwine Whittaker models for groups of different

types, as SO(2k) and Sp(2k) above.
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• In fact [GKL], [GKLO3] there are two (dual) integral representations the GL(N)-Whittaker

function Ψ
GL(N)
λ (x): Mellin-Barnes representation and Givental representation. Both represen-

tations admit recursive structures; Mellin-Barnes representation is recursive with respect to the
spectral parameters λ = (λ1, . . . , λN), and Givental representation is recursive with respect to the
coordinates x = (x1, . . . , xN). This leads to a family of mixed Givental-Mellin-Barnes representa-
tions of GL(N) Whittaker functions constructed in [GLO4].

• In this way in [GLO4] two dual Baxter operators are constructed: Q̂(γ, λ|z) and Q(y, x|γ)
corresponding to the two integral representations.

Theorem 6. [GLO4] (i) For the Baxter Q-operator in Givental representation the following rela-
tion holds ∫

dx QGL(N)(y, x| γ) Ψ
GL(N)
λ (x) =

N∏
i=1

Γ
( ıγ − ıλi

2

)
Ψ

GL(N)
λ (y)

(ii) For the Baxter Q-operator in Mellin-Barnes representation the following relation holds.∫
dγ Q̂GL(N)(λ, γ|z) ΨGL(N)

γ
N

(x) = e−e(xN−z)

Ψ
GL(N)
λN

(x)

• Moreover, in [GLO4] a universal recursive operator for GL(N) Whittaker function been con-
structed: it is symmetric with respect to both sets of parameters, λ and x.

Theorem 7. The following symmetric recursive relation for GL(N)-Whittaker functions holds.

Ψ
GL(N)
λ (x) = eıλNxN Q̂(λ, λ′| xN) ∗ Q(x, x′|λN) ∗Ψ

GL(N−1)

λ′ (x′)

where x′ = (x1, . . . , xN−1) and λ′ = (λ1, . . . , λN−1).

• These results have effective applications to automorphic L-functions. It is shown in [GLO4]
that the Stade’s relations [St1] between GL(N)− and GL(N + 2)-Whittaker functions are equiv-

alent to a composition QGL(N)
GL(N−1) ◦ QGL(N−1)

GL(N−2). Thus the results from [GKLO3]-[GLO4] essentially

simplify technical Stade’s proofs [St2], [St3] of the Bump and Bump-Freidberg conjectures [Bu],
[BuF] on Rankin-Selberg L-functions.
• The main result of [GLO4] established an explicit description of Baxter’s Q-operator as an

element of spherical Hecke algebra H(
GL(N,R), SO(N,R)

)
.

Theorem 8. [GLO4] Let φQ(λ)(g) be a K-biinvariant function on G = GL(N,R) given by

φQ(λ)(g) = 2N | det g| ıλe−π Tr gtg

(i) Then the action of φQ(λ) on Whittaker functions descends to the action of QGL(N)(λ).

(ii) Then the action of φQ(λ) on normalized Whittaker function Φ
GL(N)
γ (g) is given by

(
φQ(λ) ∗ ΦGL(N)

γ

)
(g) = L∞(λ) ΦGL(N)

γ (g)

where L∞(λ) is the local Archimedean L-factor

L∞(λ) =
N∏

j=1

π−
ıλ−ıγj

2 Γ
( ıλ− ıγj

2

)

§4. q-deformed Whittaker functions. In [GLO5] the q-Whittaker function is obtained as
a certain degeneration of MacDonald polynomial. In [GLO5]-[GLO7] the two dual representations
of q-deformation of GL(N)-Whittaker function.
• Denote by P(N) ⊂ ZN(N−1)/2 a subset of parameters pk,i, 1 ≤ i ≤ k ≤ N − 1 satisfying

the Gelfand-Zetlin conditions pk+1,i ≥ pk,i ≥ pk+1,i+1. Let PN,N−1 ⊂ P (N) be a set of p
N−1

=

(pN−1,1, . . . , pN−1,N−1) satisfying the conditions pN,i ≥ pN−1,i ≥ pN,i+1. Let q ∈ R and q < 1.



RESEARCH PROPOSAL FOR P. DELIGNE CONTEST 5

Theorem 9. The q-Whittaker function qΨz(pN
) can be written in the following form.

(I) For p
N

being in the dominant domain pN,1 ≥ . . . ≥ pNN

qΨz(pN
) =

∑

p
k
∈P(N)

N∏

k=1

z
|p

k
|−|p

k−1
|

k

N−1∏
n=2

n−1∏
i=1

(pn,i − pn,i+1)q!

∏
1≤i≤n≤N−1

(pn+1,i − pn,i)q! (pn,i − pn+1,i+1)q!
,

where we use the notations |pn| =
∑n

i=1 pn,i and (n)q! = (1− q)...(1− qn).
(II) When p

N
is outside the dominant domain qΨz(p) = 0.

• In [GLO7] a q-version of Mellin-Barnes representation of glN -Whittaker function is con-
structed. Namely, given a triangular array of variables {zk,i; 1 ≤ i ≤ k ≤ N} with zN,i :=
zi, 1 ≤ i ≤ N the following integral formula holds.

Theorem 10. (I) In the dominant domain pN,1 ≥ . . . ≥ pNN the following holds.

qΨzN
(p

N
) = Γq(q)

(N−1)(N−2)
2

N−1∏
n=1
j≤n

∮
dzn,j

2πızn,j

∏

1≤i≤k≤N

( zk,i

zk−1,i

)pN,k
N−1∏
n=1

n+1∏
i=1

n∏
j=1

Γq

(
z−1

n,jzn+1,i

)

n!
∏

j 6=m

Γq

(
z−1

n,mzn,j

)

where Γq(z) =
∏

n≥0 (1 − zqn)−1 is a q-version of Γ-function.
(II) When p

N
is outside the dominant domain qΨzN

(p
N

) = 0.

• Expanding the first formula (from Theorem 9) with respect to parameter q < 1 we get

qΨzN
(p

N
) = TrV qL0

N∏
i=1

eλiEii

This identity can be viewed as an (Archimedean) q-analog of Shintani-Casselman-Shalika formula
for p-adic Whittaker function. In particular, the constructed q-deformed glN -Whittaker function
interpolates between Archimedean and p-adic Whittaker functions with respect to parameter q.

• In [GLO7] the function qΨ̃zN
(p

N
) := qΨzN

(p
N

)
∏N−1

k=1 (pN,k − pN,k+1)q! is identified with the

character of (finite-dimensional) Demazure module of affine Lie algebra ĝlN .
• In [GLO6] the (q-version of) Mellin-Barnes representation of gl2-Whittaker function is realized

as a semi-infinite period map. The explicit form of the period map manifests an important role
of (q-version of) Γ-function as a topological genus in semi-infinite geometry.

§5. Future research: Archimedean L-functions and Topological field theories. The
relevant setting for further development of the relation between the (q-deformed) Whittaker func-
tion and semi-infinite cohomology is the topological field theory [W].
• In [GLO9] a functional integral representation for Archimedean L-factors (given by products

of Γ-functions) is proposed. The corresponding functional integral arises in the description of
type A equivariant topological linear sigma model on a disk. The obtained functional integral
representation provides an interpretation of the Γ-function as an equivariant symplectic volume
of the infinite-dimensional space of holomorphic maps of the disk to C.
• In [GLO10] it is shown that the Euler integral representation naturally arises as a disk par-

tition function in the equivariant type B topological Landau-Ginzburg model on a disk with the
target space C, which is mirror-symmetric to the type A sigma model involved in [GLO9]. These
two integral representations of Γ-functions are similar to the two constructions (arithmetic and
automorphic) of local Archimedean L-factors. The equivalence of the resulting L-factors is a
manifestation of local Archimedean Langlands correspondence.
• In the nearest future I plan to extend the results of [O1], and [GLO4]-[GLO10] to classical

Lie algebras, using the results of [GKLO3] and [GLO7]. On this route one may expect a series of
interesting and important results in representation theory and arithmetic geometry [P].
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